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The Problem of Choice Under Risk

Decision 
Maker

Act 
go to the 
cinema

State 1.
Traffic jam
(p = .35)

State 2.
No traffic jam

(p = .65)

Outcome 1.
Scream in your car

(score = 0 pts)

Outcome 2.
Watch a movie

(score = 100 pts)



  

The Problem of Choice Under Risk

Decision 
Maker

Act 1.
go to the 
cinema

State 1.
Traffic jam
(p = .35)

State 2.
No traffic jam

(p = .65)

Outcome 1.
Scream in your car

(score = 0 pts)

Outcome 2.
Watch a movie

(score = 100 pts)

Act 2.
have coffee 
with Arlene

State 1.
Arlene is in 

a good mood 
(p = .50)

State 2.
Arlene is in 
a bad mood 

(p = .50)

Outcome 2.
Fearsome with Arlene

(score = -20 pts)

Outcome 1.
Enjoy with Arlene
(score = 130 pts)

?
≻



  

Risk Attitudes and Utility

50% to win
EUR 1000

50% to win
nothing

Sure thing
EUR 500

Risk Aversion
?

●

EV ((p=.5)∗(v=1000)+(p=.5)∗(v=0))=500

( p=.5)∗u(1000)<u(500)

1738, Specimen theoriae novae de 
mensura sortis 
(Exposition of a New Theory on the 
Measurement of Risk)

Use not value (of money), but utility 
(of money), more like log(money)...

u(v)=vρ
Power utility

Exponential utility



  

Axiomatic Foundations of Utility

A1 Completeness. For all p, q: either p  ≽ q or q  ≽ p.

A2 Transitivity. For all p, q, r: if p  ≽ q, i q  ≽ r, then p  ≽ r.

A3 Independence. For all p, q, r and any real number α between 0 and 1: 
p  ≽ q iff α∙p p + (1- α) ∙p r  ≽ α∙p q + (1- α) ∙p r.

Theory of Games and Economic Behavior (1944, 2nd edition 1947): If 
the following set of axioms + some of more technical importance hold:

then a decision maker will make choices under risk as if he maintains a 
Bernoulli utility function u(v) and follows the Principle of Maximum 
Expected Utility:

EU ( p ;V )=∑
j

p (v j)u(v j)



  

Paradoxes of Expected Utility

5% to win
EUR 1000

95% to win
nothing

EUR 60=

Certainty Equivalent 95% to win
EUR 1000

5% to win
nothing

EUR 890=

Certainty Equivalent

Risk Seeking Risk Aversion

This is not possible if a decision maker is characterized by a single utility function.

Overall, it does not look like 
a shape that one would draw 
unless compelled by strong 
empirical evidence 
(Prelec, 1998).

Kahneman & Tversky 
(1979), Tversky & 
Kahneman (1992): 
Prospect Theory.

Many different probability 
weighting functions are used 
in practice.

The Prelec one-parameter 
form:

w( p)=e−((− log ( p))
γ
)

EU ( p;V )=∑
j

w ( p(v j))u (v j)

Note: This is a very simplified exposition of Prospect Theory.



  

Axioms for Behavioral Choice Under Risk

Let α, β, γ, δ be some outcomes.

Let P, Q be any two lotteries characterized by the same probability distribution:

P: (p
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A lottery α
j
P is obtained by replacing the j-th value in P by α; in an analogous way 

we obtain β
j
Q, γ

j
P, and δjQ.

Let’s introduce a tradeoff relation, * by≽ 

α, β * ≽ γ, δ iff α
j
P  ≽ β

j
Q and γ

j
P ≺ δ

j
Q.

Tradeoff Consistency: there are no outcomes α, β, γ, δ such that α, β ≻* γ, δ and α, 
β ≾* γ, δ hold.

In Expected Utility, this implies that there are no outcomes α, β, γ, δ such that 
u(α) – u(β) ≥ u(γ) – u(δ) and u(α) – u(β) < u(γ) – u(δ).

Add completeness, transitivity, and monotonicity and EU is axiomatized.

(Wakker & Tversky, 1993).



  

Axioms for Behavioral Choice Under Risk

In Rank-Dependent Utility (RDU) theories (upon which Prospect Theory is 
developed):

Define comonotonic lotteries:

P

15%   35%   50%
$50 <  $25 < $5

Q

15%   35%   50%
$10 <  $5  <  $1

Tradeoff Consistency: there are no outcomes α, β, γ, δ such that α, β ≻* γ, δ and α, 
β ≾* γ, δ hold.

In Expected Utility, tradeoff consistency holds for all lotteries.

In RDU theories, tradeoff consistency holds for comonotonic lotteries only.

In Prospect Theory, tradeoff consistency holds for comonotonic, co-signed 
lotteries only.

P’

10%   30%   60%
$50 <  $25 < $5

Q’

10%   30%   40%
$10 <  $5  <  $1

≻

≻



  

Alternative History of Probability Weighting
E.g. a monotonic function of probability (c.f. Birnbaum, 2008)

t ( p)=pτ

Gain domain: optimism
Loss domain: pessimism

Gain domain: pessimism
Loss domain: optimism

Let’s assume that all non-cognitive, non-perceptual factors that could influence 
choice exhibit their effects solely on the shape of this function, reflecting in 
optimism/pessimism attitudes towards probabilities.



  

Alternative History of Probability Weighting
Spence (1990)

t (p)=pτ

π(p)=
t ( p)

∑
j=1

n

t j

t (p) π(p)

t (p) π(p)



  

Alternative History of Probability Weighting
Viscusi (1989) Perspective Reference Theory

Lottery L:(x, p
x
; y, p

y
) is a binomial distribution:

p(x ; px)=(n
x) px

x
(1−px)

n−x

It’s conjugate prior in Bayesian inference is Beta(α, β):):

Beta(α ,β)=
1

B (α ,β)
px

α−1
(1− px)

β−1

The posterior follows a Beta distribution with:

α ' '=α+ x

β ' '=β+n−x

Note. Extension to a multinomial case with Dirichlet conjugate priors is straightforward.



  

Alternative History of Probability Weighting
Viscusi (1989) Perspective Reference Theory

Let’s introduce an alternative parametrization of the Beta distribution:

γ=α+β

γ is the “informational content of 
the individual’s prior beliefs” - a 
virtual sample size upon which the 
prior belief was developed, the 
strength of prior.

Under this choice of parameters, the estimate of the mean of the Beta posterior, p”
x
 

takes the following form:

Θp=α/(α+β)

Θ is the mean of the Beta 
distribution, and we will use it as 
our estimate of p

x
.

p' ' x=Θpx
=

γ p' x+np x

γ+n

which is a linear function of the stated probability p
x
, with a slope of n/(γ+nn) and an intercept 

(controled by the prior and γ) of γp’
x
/(γ+nn).



  

Alternative History of Probability Weighting
Viscusi (1989) Perspective Reference Theory

Probability weighting in Viscusi’s PRT

Note. This form of probability weighting alone can explain the most robust behavioral deviations from the vNM 
Expected Utility.



  

Alternative History of Probability Weighting
Introduce a monotonic transform of probability to the PRT weighting mechanism:

t ( p)=pτ π(p)=
t ( p)

∑
j=1

n

t j



  

Explaining Probability Weighting
… by simple Bayesian inference + normalized monotonic probability transform



  

On the Origin of Priors
Viscusi (1989) noted, but did not elaborate on a multiple reference point case in the 
Perspective Reference Theory, where the decision maker does not hold that all a priori 
probabilites are equal.

We are dealing with two parameters: the prior distribution over lottery outcomes, and γ, the 
strength of the prior. How do we determine the values of these parameters?

q = 1.5

q = 2.5

q = 3.5

S(u(x)): the distribution of the prior belief on u(x)

P (U (x )>u (x))=(
u (x)

umin
)
−q



  

Confidence Theory: On the Origin of Priors

1. Lottery L:(x, p
x
; y, p

y
) is a binomial distribution.

2. What is the prior belief on S(u(x))?
3. What is the prior belief on S(u(y))?
4. Prior beliefs p’

x
 and p’

y
 are:

p' x=
s(u(x ))

s(u(x ))+s (u( y ))

p' y=
s (u( y ))

s(u(x ))+s(u( y ))

N.B. What happens with the prior distribution when x and y are similar (i.e. close in value and hence close in utility)?



  

Confidence Theory: On the Strength of Priors

5% to win
EUR 10

95% to win
EUR 2000

5% to win
EUR 100

95% to win
EUR 101

95% to win
EUR 10

5% to win
EUR 2000

51% to win
EUR 100

49% to win
EUR 101

Observation. In our natural environments, where real decisions are made, 
similar outcomes occur with similar probabilities.



  

Confidence Theory: On the Strength of Priors

Shanon’s Diversity Index

p' x=
s(u(x ))

s(u(x ))+s(u( y ))

What happens with the prior distribution when x and y are similar (i.e. close in value 
and hence close in utility)? Its entropy increases.

Ω=
H (p ' )
Hmax

n

We will use Ω as our measure of γ 
- the strength of prior beliefs.

More entropic prior distributions of utility 
will gain more power in Bayesian inference.



  

Confidence Theory: The Decision Model
[ρ, τ, q, x

min
]

p' ' x=
γ p' x+n πx

γ+n

γ=Ωn

t (p)= pτ

π(p)=
t ( p)

∑
j=1

n

t j

Probability Prior

p' x=
s(u(x ))

s(u(x ))+s (u( y ))

Ω=
H (p ' )
Hmax

Posterior

Posterior Expected Utility

EU ' ' ( p ;V )=∑
j

p ' ' (v j)u (v j)

EU ' ' (p;V )=
γ

γ+n
p' x u (V )+

n
γ+n

π x u (V )



  

Rationality in the sense of vNM under Confidence Theory

When does a decision maker make rational choices in sense of von Neumann & Morgenstern’s 
axioms?

Condition 1. Objective perception of probability 
(no optimism, no pessimism).

Condition 2. The internal model of the 
environmentaly relevant probability distribution 
of value under consideration is true.

Note on Condition 2. When prior and stated probabilites are equal, Bayesian inference has no effect and the decision 
model is vNM Expected Utility (given that the Condition 1 holds; otherwise, it reduces to some form of Subjective 
Expected Utility (SEU).



  

Empirical Tests

A. Measurment of Certainty Equivalents 
Data Sets

B. Choice Experiment Data Sets

● Milovanović (2013), Experiments 2a, 2b: 
Confidence Theory without the monotone 
probability transform t(p) achieves lower 
RMSE values than Prospect Theory (CPT 
model).

● Milovanović (2014), re-analysis of the 
Gonzales & Wu (1999) data, Bayesian 
model selection procedure: Confidence 
Theory outperforms both Prospect Theory 
(CPT model) and Birnbaum’s (2008) TAX, 
irrespective of whether a power or an 
exponential utility function is assumed; it 
explains the violations of preference 
homogeneity while retatining the power utility 
function, which is not possible in Prospect 
Theory.

● Milovanović (2014), re-analysis of 
Birnbaum’s (2008) new paradoxes of risky 
choice:

● all experimental findings in these data sets 
falsify Prospect Theory (i.e. no C(PT) 
parametric model and no combination of 
parameters allows for the respective 
violations);

● Confidence Theory numerical simulations and 
model fits show that it can reproduce every 
observed behavioral pattern that violates 
Prospect Theory in this series of experiments.



  

“(He must so to speak throw away the ladder, after he 
has climbed up on it.) He must transcend these 
propositions, and then he will see the world aright.”

(Ludwig Wittgenstein,
Tractatus Logico-Philosophicus, 1921.)



  

A Strategy to Develop a Decision Theory

Formal analysis

The complexity of formal, axiomatic analysis of choice under risk (and uncertainty) 
might well be a consequence of the approach that attempts to axiomatize choice 
functions in isolation, i.e. without previously considering what other – possibly 
well-known – cognitive functions influence decision making.

Known empirical principles

For example, the normalizations used in Confidence Theory – applied to ensure that 
the decision maker always operates on a probability scale – are ubiquitous in 
cognition and perception. If we know something about the human cognitive system, 
we know that it is sensitive to relative and not absolute magnitudes of the 
environmental stimuli.

Furthermore, the idea that organisms adapt by planning their actions in respect to 
their prior experiences – in other words, that they adapt by learning - is a prominent 
idea in any behavioral science. In Confidence Theory we have assumed that the 
decision maker has some prior beliefs about the probability to improve or worsen 
upon its present condition in units of utility. That assumption is well-aligned with the 
classic form of explanation in behavioral sciences.
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